Heterosynaptic expression of depolarization-induced suppression of inhibition (DSI) in rat hippocampal cultures.
نویسندگان
چکیده
Depolarization-induced suppression of inhibition (DSI) is a transient suppression of the inhibitory synaptic transmission, observed in the hippocampus and the cerebellum, upon postsynaptic depolarization. Using rat hippocampal cultures, we examined whether DSI is confined to the inhibitory synapses on the depolarized neuron or, if DSI can spread to those on neighboring non-depolarized neurons. Whole-cell recordings were performed in 108 neuronal pairs with the following synaptic responses. Stimulation of one neuron evoked the inhibitory autaptic currents (IACs) recurrently in that neuron and also elicited the inhibitory postsynaptic currents (IPSCs) orthodromically in the other neuron. In 38 of 108 pairs, the postsynaptic depolarization caused transient suppression of IPSCs (homosynaptic DSI). In 11 of the 38 pairs exhibiting the homosynaptic DSI, the depolarization also induced suppression of IACs (heterosynaptic DSI). The heterosynaptic DSI, like the homosynaptic DSI, depended on depolarizing pulse duration and was blocked by a phorbol ester. These results suggest that DSI can spread to the synapses on a neighboring non-depolarized neuron in rat hippocampal cultures.
منابع مشابه
Presynaptic cannabinoid sensitivity is a major determinant of depolarization-induced retrograde suppression at hippocampal synapses.
Recent studies have clarified that endogenous cannabinoids (endocannabinoids) are released from depolarized postsynaptic neurons in a Ca(2+)-dependent manner and act retrogradely on presynaptic cannabinoid receptors to suppress inhibitory or excitatory neurotransmitter release. This type of modulation has been found in the hippocampus and cerebellum and was called depolarization-induced suppres...
متن کاملDirect depolarization and antidromic action potentials transiently suppress dendritic IPSPs in hippocampal CA1 pyramidal cells.
Whole-cell current-clamp recordings were made from distal dendrites of rat hippocampal CA1 pyramidal cells. Following depolarization of the dendritic membrane by direct injection of current pulses or by back-propagating action potentials elicited by antidromic stimulation, evoked gamma-aminobutyric acid-A (GABA(A)) receptor-mediated inhibitory postsynaptic potentials (IPSPs) were transiently su...
متن کاملFunctional significance of cannabinoid-mediated, depolarization-induced suppression of inhibition (DSI) in the hippocampus.
A number of recent studies have demonstrated that a well-known form of short-term plasticity at hippocampal GABAergic synapses, called depolarization-induced suppression of inhibition (DSI), is in fact mediated by the retrograde actions of endocannabinoids released in response to depolarization of the postsynaptic cells. These studies suggest that endogenous cannabinoids may play an important r...
متن کاملN-ethylmaleimide blocks depolarization-induced suppression of inhibition and enhances GABA release in the rat hippocampal slice in vitro.
Regulation of synaptic, GABAA receptor-mediated inhibition is a process of critical importance to normal brain function. Recently, we have described a phenomenon in hippocampus of a transient, yet marked, decrease in spontaneous, GABAA receptor-mediated IPSCs after depolarization activated Ca2+ influx into a pyramidal cell. This process, depolarization-induced suppression of inhibition (DSI), i...
متن کاملEvidence for metabotropic glutamate receptor activation in the induction of depolarization-induced suppression of inhibition in hippocampal CA1.
Depolarization-induced suppression of inhibition (DSI) is a transient reduction of GABAA receptor-mediated IPSCs that is mediated by a retrograde signal from principal cells to interneurons. Using whole-cell recordings, we tested the hypothesis that mGluRs are involved in the DSI process in hippocampal CA1, as has been proposed for cerebellar DSI. Group II mGluR agonists failed to affect either...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuroscience research
دوره 36 1 شماره
صفحات -
تاریخ انتشار 2000